
Humanlike Behavior in a Third-Person Shooter
with Imitation Learning

Alexander R. Farhang∗†, Brendan Mulcahy†, Daniel Holden†, Iain Matthews† and Yisong Yue∗
∗Caltech, Pasadena, CA, USA, †Epic Games, Cary, NC, USA

Abstract—We tackle the problem of generating humanlike bot
behavior by learning from human demonstrations. We developed
a controlled gym environment to collect data on a subset of
human behavior—namely aiming and target acquisition in single
opponent settings. We introduce an identity-conditioned causal
transformer to produce humanlike behavior of a controllable
quality on a per-frame basis that captures the differences in skill
and style between conditioned players.

Index Terms—imitation learning, sequence modeling, human-
like behavior

Video: alexfarhang.github.io/humanlikebehavior

I. INTRODUCTION

Non-player characters (NPCs) are a crucial component in
many modern games, from single-player role-playing games
to large multiplayer combat oriented games. Highly engaging
NPCs, or bots, can bring life to a game and increase a player’s
immersion through competition or collaboration. Common
approaches to developing game artificial intelligence (AI)
often involve bespoke, finely crafted behavior trees to try to
approximate human behavior—which is challenging to both
specify and capture. These challenges are exacerbated when
developing diverse NPC behaviors, such as those with variable
personas or skills.

In this paper, we develop a controlled game environment
to collect human gameplay for aiming in one-versus-one
combat. We then use this data to train neural network models
for humanlike behavior—specifically aiming and movement
control. This controlled setup allows the capturing of human
behavior for target acquisition and tracking with a known
target, which would otherwise have to be heuristically chosen
in a multi-target environment. With this approach, a relatively
small amount of data (on the order of hours) is needed for
models to begin to approximate human behavior.

Our agent model is based on a causal transformer neu-
ral network trained on human trajectories. The transformer
network is autoregressive, and learns to reconstruct future
actions based on previous state-action sequences. Furthermore,
we add a novel type of identity-conditioning by prompting
the transformer with a prepended learned token signifying
a player’s identity, modifying the quality of gameplay. This
allows us to incorporate multiple skills or styles of gameplay
in a single model, which enables batch processing of neural
network controlled bots with differing characteristics. Our
approach can replicate qualitative and quantitative aspects of
humanlike behavior and capture elements of individual player
style.

Data Gym
Humans play

Log data

states

actions

Offline training

Inference 

© Epic Games

Fig. 1. Data collection and inference framework. Human demonstrations are
logged, models are trained offline, then models are imported into the engine
for inference.

II. RELATED WORK

Deep learning has enabled considerable advances in the
creation of agents to play modern games, including real-time
strategy games like StarCraft and multiplayer online battle
arenas like Dota 2 [1], [2]. The research community has also
applied deep learning to first-person shooter gameplay using
platforms built upon Quake 3 and Doom [3], [4]. Large-scale
behavior cloning demonstrated success on the more recent
first-person shooter, Counter-Strike; Global Offensive, from
pixels, using unlabelled datasets with inverse dynamics models
alongside smaller datasets of expert demonstrations [5]. Simi-
lar approaches, though with learned inverse dynamics models,
have worked at even larger scale in Minecraft, achieving game
milestones that can take skilled humans over 20 minutes of
gameplay [6]. Other behavior cloning approaches synthesize
language and gameplay to produce generalist agents with the
ability to play multiple 3D games [7]. Adversarial imitation
learning approaches have also been used to generate policies
with multiple behavioral personas in racing and navigation
environments [8]. In this work, we use imitation learning to
generate controllable humanlike behavior of differing player
styles and skills in an interactive environment involving com-
petition with another dynamic agent.

III. DATA

A. Data Gym

Our Data Gym is a custom one-versus-one combat map built
using Fortnite, a popular, modern third-person shooter game

https://alexfarhang.github.io/humanlikebehavior


in Unreal Engine 5 (UE) [9]. The player engages in weapon-
based combat with a bot (traditional behavior tree-based
game AI) spawned near the player (Fig. 1). Following the
standard control mechanics of third-person shooters, the player
can navigate and aim with forward/backward and left/right
translational controls and can rotate in yaw and pitch with
mouse movements. The player also controls firing the weapon,
aiming down sights, crouching, sprinting, and jumping.

The game consists of a series of matches versus the bot
with the following structure.

1) The player is reset to a starting location and a 3 second
countdown begins, during which the player’s controls
are locked.

2) After the countdown, a bot is spawned at a random
location within a fixed distance of the player. The
player’s controls are unlocked, and the player attempts
to acquire and eliminate the target.

3) Once the target or the player is eliminated (100 shield
and 100 health points are lost), the process restarts.

Data was collected in 20 minute sessions from 5 players
ranging from 1 to 2.5 hours each, totalling 8 hours or 800k
frames. The UE Learning Agents plugin [9] enabled state-
action trajectories to be logged directly from the game state.
Learning Agents also supports runtime inference and direct
game state control through the UE Neural Network Engine
(NNE) plugin for agent evaluation [9].

B. Frame Rate

Handling variable frame rates is a common challenge in
learning from and generating realistic gameplay. Moreover,
the additional overhead of running neural network inference
results in a lower frame rate, which can cause distribution shift
from training data collected at faster frame rates. We found
in initial experiments that encoding the instantaneous frame
rate improved model performance. As the viable frame rate
for in-engine neural network inference with our models was
approximately 30 frames per second (fps), we found further
improvements by requiring the fps of human data collection
to stay between 20 and 40 fps.

C. State Space

A benefit of interfacing with the game engine is that
game state information can be extracted directly, bypassing
expensive pixel-based computations on rendered scenes. The
Data Gym trajectories log state information of the player’s
own character as well as information about the opponent and
game state. These “self” features include the player’s rotation
and whether a bullet was just fired. “Opponent” state features
include pitch and yaw error from the player’s rotation centered
at the weapon to the pelvis of the opponent, as well as the
opponent’s velocity and distance.

D. Action Space

The action space included all ways that the player can
control the playable character via a combination of key presses
and mouse movements that have been processed by the game

Causal Transformer

s0 a0 sT aTid s1 a1 …

â0 â1 âT

enc + 
pos emb

dec

single input trajectory, τ

Fig. 2. Identity-conditioned causal transformer. To predict actions, the trans-
former processes a state-action history sequence (with an optional, prepended
identity token).

engine’s input system. Aiming actions are the changes in
character rotation (pitch and yaw) and movement actions are
the inputs along the forward/backward and left/right axes.
Crouching, jumping, weapon firing, and weapon aiming-down-
sights are additional controlled actions. Because all data log-
ging is integrated into the game engine, no inverse dynamics
model is required to infer actions—the player’s ground truth
actions are recorded. Actions are treated as continuous outputs
and are optimized with mean squared error during model
training. In cases where discrete actions must be handled by
the game engine, predicted actions are thresholded.

IV. AGENT

A. Neural Network Architecture

Transformers were introduced to efficiently model sequen-
tial data and consist of repeated blocks of attention [10].
Sequence tokens are linearly projected into Queries (Q), Keys
(K), and Values (V ); Values are weighted by the normalized
(often scaled) similarities of tokens across the sequence (1).

Attention(Q,K, V ) = softmax(QKT )V (1)

Decoder-only transformer models were subsequently pro-
posed for generative pre-training (GPT) which introduced
causal masking for batched autoregressive predictions [11].
Two approaches utilizing the GPT architecture for offline re-
inforcement learning include the Decision Transformer, which
focused on reward conditioning, and the Trajectory Trans-
former which used beam-search-based planning [12], [13]. We
build on the Decision Transformer due to its simplicity of
use at inference time and reduced computational cost. This
paper uses a causal transformer to process a trajectory, τ , of
alternating embeddings of states and actions, with temporal
length T ,

τ = (s0, a0, s1, a1, . . . , sT , aT ).

State and action features are separately encoded with linear
layers then added to learned positional embeddings for each
time step (Fig. 2). As the sequence has been split into
states and actions, the context window is 2T . The embed-
ded sequence is processed by multiple stacked decoder-only
transformer blocks using causal attention masking. Finally,



the action is predicted with a linear layer at the appropriate
sequence token. This base transformer structure resembles a
Decision Transformer without return inputs [12].

B. Identity Conditioning

In identity-conditioned experiments, an additional “id” to-
ken is prepended to the state-action sequence, to prompt the
transformer with a trajectory identity when generating actions
(Fig. 2). A shared learned embedding akin to a positional
embedding is added to identity tokens. In this paper, id
can refer to group membership or an individual player id.
In the skill group-conditioned experiments, the id indicates
which group of players the trajectory belongs to (high skill
group or low skill group). In individual identity-conditioned
experiments, the id is unique to each player. At inference,
conditioning a trajectory is simply prompting the model with
the desired id embedding.

C. Training and Inference Details

We utilized a 4 layer stacked decoder with 256 dimensional
embeddings and 4 attention heads. Training took 1e5 iterations
with the Adam optimizer (learning rate: 1e−4) and 1e4 steps
of linear warmup. Dropout was set to 0.1 and the attention
window was over 60 frames (120 tokens due to the state-action
split and 121 when including identity conditioning). 60 frame
trajectory segments were sampled for training. Models were
converted to ONNX and run in UE using the NNE plugin.

Because the weapon in the Data Gym was automatic,
players typically held down the trigger once they acquired
the target, resulting in relatively few trajectories exhibiting
the transition from no-firing to firing. This also resulted in
the model controlling firing in a highly autoregressive way,
such that firing would be predicted mainly when there was
firing in the previous 60 frames. To improve the model during
inference, it was augmented with a simple in-engine rule-based
controller that actuated additional firing when the character
was aiming roughly at the target, effectively seeding the model
for autoregressive prediction. As we are primarily concerned
with humanlike rotational aiming, this was sufficient for our
needs. We found performance on a held out validation set to be
only weakly informative of the model’s ultimate performance
in engine rollouts, consistent with prior observations [7].

V. RESULTS

Our results analyze two main questions: 1) do our trained
models behave in a more humanlike way than the existing
hand-crafted bots; and 2) whether we can train models to
achieve variable behaviors (e.g., skill levels or personas).

A. Humanlike Behavior of the Unconditioned Model

We first analyze our learned base model, without any
identity conditioning, trained on two highly skilled players—
each with win rate over 97%. The goal of this analysis is
to determine whether the basic version of our models can
generate generic humanlike behavior by comparing our neural
networks to humans and bots. Notably, the neural network

bo
t

hu
man nn

0

1
Win rate

bo
t

hu
man nn

0

10
Kills per min

bo
t

hu
man nn

0.0

0.5
Accuracy

bo
t

hu
man nn

0

15

30
Trajectory (s)

20 0 20 40 60 80
frames

0

50

100

 Tr
aj

ec
to

ry
 e

ne
rg

y

Target
acquired

Yaw

bot
human
nn

20 0 20 40 60 80
frames

0.00

2.25

5.00

Target
acquired

Pitch

Fig. 3. Top: combat statistics of humans, learned agents (nn), and bots.
Bottom: yaw and pitch trajectory energy comparisons for windows before
and after target acquisition (with 95% confidence intervals).

model (nn) has a win rate surpassing that of the bot and
weapon accuracy and match completion speeds more similar
to humans (Fig. 3).

To quantitatively measure the aggregate structure of aiming
before and after target acquisition, we use a metric similar to
the average rotational energy over a time period t, where rt̂ is
a rotational action at time t̂. We show the energy in cascaded
windows before and after initial target acquisition (when yaw
error first becomes 0), with different windowing periods: 20
frames before acquisition and 5, 10, 20, 40, and 80 frames
after acquisition (Fig. 3).

Trajectory Energy(t, r) =
1

t

t∑
t̂=0

r2
t̂

(2)

The energies drop upon target acquisition for bots, humans,
and neural networks, because large turns are no longer nec-
essary to acquire a target. The neural networks exhibit en-
ergy levels more similar to those of humans, especially after
acquisition when characters are actively tracking the target.
Neural network energy levels are lower overall, perhaps due
to underfitting.

When compared to bots qualitatively, the trained neural net-
work models and humans exhibit smoother target acquisitions
as well as fewer large jerky movements during target acquisi-
tion and tracking (Fig. 4, example video). The learned models
are also robust to rotational and translational perturbations—

0 1 2
seconds

100

0

100

Ya
w 

er
ro

r t
o 

ta
rg

et
 (°

)

Acquiring target

bot
human
nn

3 4 6
seconds

3

0

3

Tracking target

Fig. 4. Aiming behavior. Yaw error to the target for example trajectories of
bots, humans, and neural networks playing the Data Gym. The first half of
the trajectory shows the acquisition of the target (left), and the second half
shows the tracking behavior (right).



they can recover from sudden, large (injected) turns away from
the opponent. This ability was enhanced by initiating matches
in the Data Gym with random pitch rotations; providing
demonstrations on large pitch errors helped prevent the learned
agents from becoming stuck looking at the ground or sky.
Overall, these results demonstrate that, in the context of one-
on-one combat, our model generates more humanlike behavior
than our hand-crafted bot.

B. Skill Group Identity Conditioning

We next addressed whether our model can be prompted to
produce behavior of a variable caliber. Players were split into
two coarse groups separated by win rate: high skill group (win
rate ≥ 90%) or low skill group (win rate < 90%). An identity-
conditioned transformer was trained with group membership
identity labels. We find that prompting with skill group enables
a single model to exhibit different qualities of behavior, a
convenient trait when trying to minimize memory allocation
to neural network weights in engine. We find differences
in win rate and kills per minute corresponding to group
identification—low skill group conditioning resulted in lower
performance than high skill grouped conditioning (Fig. 5, left).

C. Individual Identity Conditioning

Finally, we explored whether identity conditioning enables
the model to capture unique play styles. We trained an identity-
conditioned model on individual player identities with 4 play-
ers. We quantify some low-level features of gameplay that vary
drastically between players: jumping and crouching. Some
players’ play styles include frequent crouching or jumping and
others never engage in the behaviors. The neural network can
reproduce these behaviors per identity, though imperfectly—at
lower rates and Player 3’s crouching behavior is not replicated
(Fig. 5, right). Identity conditioning on individual players picks
up elements of their play styles, though can come at a cost
of reduced skill replication for some identities, which may be
improved with larger datasets.

D. Failure Modes

If the distance to the target becomes too large, the models
can have difficulty accurately tracking the target. Players also
prefer to engage in up-close combat. Additionally, some-
times low skill group-conditioned models or player identity-
conditioned models actuate lower aiming skill by exhibiting
offsets in aiming.

VI. DISCUSSION AND CONCLUSION

Our imitation learning approach captures quantitative and
qualitative elements of humanlike aiming behavior with a
relatively small data requirement. Additionally, our proposed
identity-conditioning framework allows controllable genera-
tion of differing qualities and styles of play with a simple
prompting mechanism. This approach to replicate aspects of
a desired behavior, in this case humanlike aiming, can be
synthesized with behavior-tree based AI such that the neural
network aiming module can be recruited in particular contexts,

H-hi
gh

nn
-hi

gh
H-lo

w
nn

-lo
w

0

1

W
in

 ra
te

Skill group
identity conditioning

H-hi
gh

nn
-hi

gh
H-lo

w
nn

-lo
w

0

10

Ki
lls

 p
er

 m
in

H id
1
 nn

 id
1

H id
2
nn

 id
2

H id
3
nn

 id
3

H id
4
nn

 id
4

0

20

Cr
ou

ch
in

g 
%

Individual
identity conditioning

H id
1
 nn

 id
1

H id
2
nn

 id
2

H id
3
nn

 id
3

H id
4
nn

 id
4

0

3

Ju
m

pi
ng

 %

Fig. 5. Identity conditioning results with skill group-conditioned (left) and
individual player-conditioned neural networks (right). Combat statistics for
humans (solid) and neural networks (hatched).

like one-on-one engagements. This is particularly useful when
the desired behavior is difficult to specify and hand craft, but
demonstrations are straightforward to obtain.

Future directions could explore scaling up the amount and
diversity of the data and complexity of the behavior. Instead
of conditioning on simple skill group-based or player-level
identities, large scale datasets of diverse play styles could be
used to learn a useful latent space for a desired downstream
task. While this paper focused on aiming, our approach can be
applied to other modalities of humanlike gameplay, for exam-
ple navigation, structure building, or multiplayer collaboration.

REFERENCES

[1] O. Vinyals et al., “Grandmaster level in Starcraft II using multi-agent
reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[2] OpenAI et al., “Dota 2 with large scale deep reinforcement learning,”
2019.

[3] C. Beattie et al., “Deepmind lab,” 2016.
[4] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski,

“Vizdoom: A Doom-based AI research platform for visual reinforcement
learning,” in IEEE CIG, 2016.

[5] T. Pearce and J. Zhu, “Counter-strike deathmatch with large-scale
behavioural cloning,” in IEEE Conference on Games, 2022, pp. 104–
111.

[6] B. Baker et al., “Video pretraining (VPT): Learning to act by watching
unlabeled online videos,” 2022.

[7] S. Team et al., “Scaling instructable agents across many simulated
worlds,” 2024.

[8] W. Ahlberg, A. Sestini, K. Tollmar, and L. Gisslén, “Generating personas
for games with multimodal adversarial imitation learning,” in IEEE
Conference on Games, 2023.

[9] Unreal engine. [Online]. Available: https://www.unrealengine.com/
[10] A. Vaswani et al., “Attention is all you need,” in NeurIPS, vol. 30, 2017.
[11] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving

language understanding by generative pre-training,” 2018.
[12] L. Chen et al., “Decision transformer: Reinforcement learning via

sequence modeling,” in NeurIPS, vol. 34, 2021, pp. 15 084–15 097.
[13] M. Janner, Q. Li, and S. Levine, “Offline reinforcement learning as one

big sequence modeling problem,” in NeurIPS, vol. 34, 2021, pp. 1273–
1286.

https://www.unrealengine.com/

	Introduction
	Related Work
	Data
	Data Gym
	Frame Rate
	State Space
	Action Space

	Agent
	Neural Network Architecture
	Identity Conditioning
	Training and Inference Details

	Results
	Humanlike Behavior of the Unconditioned Model
	Skill Group Identity Conditioning
	Individual Identity Conditioning
	Failure Modes

	Discussion and Conclusion
	References

