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Abstract

We study the problem of steering LLMs, where the goal is to intervene on hid-
den layer activations in order to improve specific behavioral properties. We are
particularly interested in settings where one can optimize over a large candidate
set of steering interventions to find valuable, task-related perturbations. We take
the approach of using sparse autoencoder adapters coupled with natural language
feature descriptions to identify disentangled latent dimensions, after which we
select and optimize a subset of the the latent codes that are relevant for the target
downstream behavior. A key benefit of our approach is the ability to leverage LLM
priors to guide feature selection without manual inspection of relevant features. We
empirically demonstrate that our approach can generate steered LLM variants that
outperform unsteered LLMs on natural language tasks. Furthermore, the selected
steering variants can exhibit cross-lingual transfer, providing task improvements on
other languages, unseen during selection or tuning. Our method enables tractable,
optimized LLM steering by decomposing the problem into discrete feature selection
and continuous optimization. This work demonstrates how tools from mechanistic
interpretability can be leveraged to improve model capabilities.

1 Introduction

Large language models (LLMs) have rapidly improved their general problem solving ability in recent
years, due in large part to massive scaling of train-time compute for pre-training [11l]. However, to
alter LLM behavior and improve capabilities for specific downstream tasks, multiple techniques can be
used, including the modification of weights, context, and activations. Weights are typically modified
through supervised finetuning [30], reinforcement learning [7]], and other post-training approaches
as well as direct model editing [[15]. LLM performance can be altered through modifications to the
context and produced tokens, including Chain of Thought [260], test-time scaling [16]], and agentic
harnessing [29]] and tool use [21]]. Finally, direct perturbation of neural activations has emerged as a
promising method to control LLM response properties, including activation engineering techniques
[24] like model steering [S] and activation patching [10]. Direct intervention on model activations
can be challenging, as they are extremely high-dimensional spaces and semantically dense. Common
approaches include finding steering vectors by computing the difference of mean activations between
sets of contrastive example pairs or by using the weight vectors of trained linear classification probes
[ 11301170 221 24]]. Steering LLMs has typically involved intervening on identified concepts, styles,
or even reasoning techniques, and ensuring the outputs reference and use the topics or strategies
[12] 250 27, 28]]. Recent work has proposed using steering methods during training to prevent the
development of particular unwanted features like sycophancy [5]].

Sparse Autoencoders (SAEs) have been introduced as a method in mechanistic interpretability
research with the goal of crisply decomposing neural activations into individual, understandable
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concepts [4, 16} 23]. Neural activations are typically highly polysemantic—individual neurons are
often activated in response to different concepts, a phenomenon also noted in biological brains and
termed "mixed selectivity" [20]. Recent work has combined steering with SAEs, by perturbing in the
higher-dimensional, but more human-interpretable SAE latent space [[14} 23]].

Our approach continues on this thread, performing interpretable, sparse interventions in the SAE
latent space rather than dense modifications in the raw activation space. We leverage the intelligence
of frontier LLMs to define problem solving strategies to be utilized by a smaller steerable model,
performing semantic search over labeled SAE latent features to select for feature vectors most closely
related to conceptual, metacognitive strategies to solve downstream tasks. Although our interventions
are compound (combining multiple interpretable features), the SAE space provides a more traversable
landscape for steering compared to random neurons or the underlying LLM activation space, where
individual dimensions lack clear semantic meaning. Through this combination of approaches, we
innovate a method to more tractably maneuver the enormous size of the steering space by decomposing
the problem into discrete feature selection and continuous optimization.

2 Methodology for Optimized Semantic Steering

SAEs encode high-dimensional, but disentangled latent spaces. As the features recovered should be
monosemantic, it can be expected that finely-grained steering optimization could be performed if the
right subset of dimensions to optimize over is chosen appropriately. To address this, we propose a
method for optimized semantic steering, augmenting an LLM with three modules: a Model Adapter,
a Feature Selector, and an Optimizer (Fig. [T). The Model Adapter defines an interpretable latent
space and provides a mapping from the perturbation space to the LLM’s activation space, enabling
steered inference from a modified latent representation, h. The Feature Selector generates the feature
set V, which defines a perturbation subspace in the Model Adapter’s latent space. The Optimizer
selects the feature weight vector, «, scaling each component of the feature set for model steering:
h=h+aOV.

Each feature v; corresponds to a one-hot vector 1{v;} in the Model Adapter latent space that is 1
at the dimension corresponding to feature v; and O elsewhere. Model Adapter latent features are
modified by applying the tuned weights: h = h + ). «; - 1{v;}, where h is the original encoding
and «; is the learned scaling weight for feature v;. The Model Adapter decodes the steered latent
back to LLM activation space and the modified activation continues through the LLM’s forward pass.

d Optimized Semantic Steering\ Output
—

|
nj

Feature Selector

SAE Adapter ;

Input

Task Examples

=]

Figure 1: Diagram of our Optimized Semantic Steering method.
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2.1 Model Adapter

Our Model Adapter is an SAE, coupled with natural text description of features, trained to reconstruct
residual hidden layer activations, 2 € R?, at a specific layer in our steerable LLM:

T = Wdech + bdec; h = O—(Wencx + b(’n(‘)

where W,,,. € R™%% b, € R™, Wyee € R*™, and by, € R? are the learned parameters. The
nonlinearity, o(-), is the ReLU activation function; other approaches to training SAEs use different
activation functions to promote sparsity, including Jump-ReL.U [19]], Gated [18]], TopK [8].



To encourage sparsity, the latent dimension of the SAE is set to be much wider than the dimension of
the neural network activations at that layer, d. Additionally, the SAEs are typically trained with a
reconstruction loss regularized with a sparsity constraint, in this case L; regularization:

L(z, &,h) = ||z — &[5+ N[l

To steer model behavior from this SAE latent space, the error term of the lossy SAE is calculated,
€ = x — I, and intervention is performed by modifying the desired features in the SAE latent, h,
decoding, and re-adding the error term:

T = Wdecffl + bgee + €.

2.2 Feature Selector

We set the Feature Selector to be a powerful LLM combined with a semantic feature search. Natural
language-associated SAE features are selected by Claude Sonnet 4: we prompt the LLM with 24
set-aside in-context examples, as well as instruction to generate /N non-overlapping strategic concepts
C = {c1, ¢, ..., cn } that should be used to solve questions of this type (see . We then use
semantic feature search to identify the top-k£ most similar SAE features per concept, ¢;, yielding a
feature set V.= {v1, va, ..., un.x }. For all experiments, we generate N = 10 concepts and k = 2
features per concept, resulting in a steering vector of 20 features (using the Ember SDK [3] for
similarity querying) per dataset that remain fixed for optimization.

2.2.1 Feature Selector Ablation - Random Features

We substitute our Feature Selector with a random choice of 20 SAE features to perform optimization
on, ignoring the semantically rich feature label associated with each. This serves as the primary
baseline to demonstrate the value of semantic selection over arbitrary feature steering.

2.3 Optimizer

For our optimizer, we use out-of-the-box Bayesian Optimization using Tree-Structured Parzen
Estimation, which tunes the features, V, to find optimal steering weights o = {1, ag, ..., am},
where «; € [—0.3,0.3] for each feature v; € V. Optimization directly maximizes accuracy on a
train set of 500 examples, running 100 trials, with 4 parallel workers. We implement median pruning
(checking every 50 samples after the first 100) and early stopping for catastrophic trials (accuracy
below 5% on the first 100 samples). We select the top 3 performing variants on our train set and
observe performance on a validation and test set.

2.4 Data and Models

We use a subset of the multilingual datasets provided in the BUFFET benchmark, namely XWinograd
(commonsense reasoning), XNLI (natural language inference), and Amazon Reviews (sentiment clas-
sification) [2]]. By default, we use the English subsets, except for the language transfer experiments,
where we investigate the Xwinograd Portuguese, Japanese, and Chinese datasets.

We use the lightweight open source Llama-3.1-8B-Instruct model [9] and the open source SAE,
Llama-3.1-8B-Instruct-SAE-119 released by Goodfire [[14]], which is associated with text features for
every SAE hidden dimension neuron (65, 536 neurons), before filtering for toxicity. This SAE is
trained using the LMSYS-Chat-1M dataset [31]] on the residual stream at layer 19 of Llama-3.1-8B,
achieving an LO count of 91 (mean number of activated features). Llama-3.1-8 is run with a maximum
output token limit of 500, temperature of 0.6, and top-p of 0.9. A maximum output token limit is
critical, as Llama-3.1-8B in its default case will often repeat sentences unnecessarily. In this work, we
treat our steered LLM as a "reasoning engine" and do not require multiple choice formatting, instead
feeding its output and the multiple choice mapping to a separate formatter LLM, GPT-4.1-mini with

temperature 0.7 (see|A.1.3).



3 Results

We find that our approach robustly finds model variants with improved downstream performance
on the commonsense reasoning tasks in the Xwinograd English dataset. The LLM Feature Selector
chose strategic concepts that match to SAE features that can be steered to generalize much better
than random features (Fig. 2} Fig. ). On the natural language logical inference task, XNLI, our
approach selects % variants that outperform the baseline LLM with SAE. However, we find small
improvement on the sentiment classification task, Amazon reviews, likely due to task performance
saturation: Llama-3.1-8B already performs within a percent of GPT-4.1-mini, which far outperforms

the Llama model on other tasks (Table[T]in[A}.
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Figure 2: Generalization performance of Optimized Semantic Steering variants vs steering of
randomly selected SAE features.

3.1 Semantic steering can generalize across language

We dive deeper into the steered model variants selected by our method on the XWinograd dataset.
As this is a multilingual dataset, we apply the identical steered model variants that were selected
exclusively on the English data subset to other languages, in a language transfer experiment. We find
that they transfer extremely well to Portuguese, with some benefit on Japanese and Chinese (Fig. [3),
suggesting that the features selected improve reasoning in a shared way across languages.
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Figure 3: Language transfer of steered model variants tuned only on English Xwinograd questions.

4 Limitations

While this work serves as a proof of concept for optimized semantically-guided steering for down-
stream task performance, it is important to note that it only uses a single LLM (8B) and SAE.
Appropriate granularity of SAE feature labels is key for this approach and understanding the steer-
ability of features labeled with different auto-labeling methods would be informative. Furthermore,
Bayesian Optimization is computationally expensive; extensions could more efficient feature selection
methods, including those that incorporate feature selection iteratively. Future work should explore
larger models, more diverse and challenging datasets, as well as multilayer inventions.
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A Technical Appendices and Supplementary Material

A.1 Prompts

A.1.1 Concept Selection Prompt

~ )

This is a set of example <QuestionType> questions with <N> choices each: <ValidChoices>.
Each sentence is provided, followed by the choices, and the answer key. Please consider
the questions, and come up with a list of 10 "semantically separate conceptual features"
that should be used to answer questions of this type. First, carefully reason about the
question types, and then at the end provide the refined list in short descriptive sentences.
The conceptual features should be written as instructions, as if informing an assistant on the
optimal ways to think or respond. Example 1,..., Example 24

A.1.2 Question Answering Prompt

Xwinograd

You are a helpful assistant. You will be presented with a fill in the blank sentence with two
possible choices. Briefly think about the question, then provide the answer at the end.

XNLI

You are a helpful assistant. You will be presented with a premise and a hypothesis with three
possible choices for the logical relationship between the premise and hypothesis. Briefly
think about the question, then provide the answer at the end.

Amazon Reviews

You are a helpful assistant. You will be presented with a review of a product with the task of
classifying the sentiment in the review as either positive or negative. Briefly think about the
review, then provide the answer at the end."

A.1.3 Formatter Prompt

You are a helpful assistant that extracts the multiple choice answer from another assistant’s
response. The other assistant will respond with the semantic answer, you will map it to the
corresponding letter from the choices. Valid choices are: [A, B.....None]. Return just the
capital letter. If the previous assistant did not provide a valid, extractable answer or provided
a response not within the choices, return None. If it appears that the previous assistant made
a mistake, do not correct it. The choices provided to the previous assistant are: Choices. The
previous assistant’s response is: "Response."

A.2 LLM-Selected Features

LLM-Selected SAE Features for XWinograd

"Introduction of multiple causal factors in analytical explanations"
"Instructions to identify causal relationships between events"
"connecting actions with their intended purposes or outcomes"
"Groups of characters described in collective states or actions"
"Analytical explanations of emotions and desires"

"Speculative discussion of emotional states and feelings"

"Temporal and sequential ordering concepts"




"Temporal and sequential transition phrases"

"Material properties and characteristics (physical and abstract)"
"Scientific observation and analysis verbs"

"Political and social power dynamics"

"Analysis of power dynamics and systemic relationships"
"Ownership and possession concepts across domains"

"Institutional representation and possession relationships"
"Discussion of domain-specific knowledge or expertise"

"Academic technical terminology in educational contexts"

"Basic syntactic glue and connecting elements in English and code"
"Complex explanatory sentence structures in formal writing"

"The model needs to verify factual consistency"

"Evaluating factual consistency or correctness"

LLM-Selected SAE Features for XNLI

"Cross-lingual detection of semantic difference/distinctness"

"Assessment of potential, capability, or relationship between things"

"Structural elements and vocabulary characteristic of different writing styles
and genres"

"Contradiction or correction of previous statements"

"Technical boilerplate code for imports and API initialization"

"Technical explanation patterns showing causation or implication"

"Verification that facts are explicitly mentioned rather than implied or
hallucinated"

"Logical inference and deduction processes"

"Inclusive/comprehensive scope markers in formal language"

"Articles and quantifiers across multiple languages"

"Temporal and conditional relationships marked by ’when’"

"Temporal relationships in explanatory contexts"

"Detection of content characterized as having deeper significance or meaning"

"Syntactic markers that precede new information or content"

"Measuring or analyzing sentiment and feedback"

"Formal positive sentiment analysis and evaluation"

"Fact-checking and verification of factual accuracy"

"The model should emphasize factual accuracy and resist making things up"

"Formal logical reasoning and argumentation"

"Start of conditional statements requiring logical analysis or ethical
consideration"

\. J

LILM-Selected SAE Features for Amazon Reviews

"Comparing subjects to their own expectations or requirements"
"Comparing actual outcomes to expectations, especially when they differ"
"Measuring or evaluating performance and effectiveness"

"Analytical statements about performance or capability"

"Measuring and evaluating satisfaction levels in formal contexts"
"Gradation words in formal measurement scales"

"Software bugs and defect tracking"

"The assistant is listing drawbacks or limitations in a numbered format"
"Explaining how something is perceived or interpreted by others"

"Active perception or consideration from a specific viewpoint"

"Emphatic denial or strong refutation"

"The assistant is evaluating or analyzing the quality of responses"
"Technical implementation and setup instructions"

"User interface design qualities emphasizing ease of use"

"Product descriptions emphasizing durability and quality construction"
"Discussion of final product quality in manufacturing contexts"
"Technical discussion of recommendation systems"

"Technical explanations of recommendation systems and algorithms"
"Technical problems or issues requiring troubleshooting"

"Resolution or handling of problems, errors, or conflicts"




A.3 Random Features

Randomly Selected SAE Features

"Spanish and Indonesian grammatical connectors and elaborative suffixes"

"The assistant lacks knowledge about a specific entity"

"Bankruptcy and insolvency proceedings across languages"

"Tokens marking stages in data or reasoning transformations"

"The assistant should begin generating creative content based on specifications"

"The assistant is transitioning to provide a detailed explanation or list"

"The letter combination ’sk’, particularly in Swedish words and technical terms"

"The assistant is providing instructional examples or explaining possibilities
to the user"

"Describing lasting influence and legacy in biographical writing"

"Descriptions of terrorist attacks and military strikes"

"Introductory descriptions of prestigious international events and competitions"

"Discussions requiring careful handling of race-related topics"

"Technical terms beginning with pre-"

"Explanations of function return behavior in programming documentation"

"Professional job positions and roles in formal contexts"

"Questions probing for characteristics in world-building and hypothetical
scenarios"

"Modal and auxiliary verbs expressing possibility or uncertainty"

"Descriptions of mystical energy being harnessed or transferred"

"The assistant is using explicit conditional statements to enumerate different
cases and their implications"

"Comparative frequency and recency of events or behaviors"

A.4 Baselines

Table 1: Dataset baselines

XWinograd XNLI Amazon
Train Val Test Train Val Test Train Val Test
Llama-3.1-8B-Instruct 0.706 0.682 0.682 0.71 0.654 0.675 0.936 0.926 0.941
Llama-3.1-8B-Instruct w/ SAE  0.622 0.7 0.701 0.678 0.619 0.672 0.931 0.929 0.945
GPT-4.1-mini 0.926 0.872 0.893 0.866 0.856 0.876 0.956 0.952 0.951
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A.5 Example Best Feature Weights for Xwinograd English

Best Feature Values (Sorted): Xwinograd English

connecting actions with their intended purposes or outcomes -
Discussion of domain-specific knowledge or expertise

Basic syntactic glue and connecting elements in English and code
Political and social power dynamics o

Temporal and sequential ordering concepts

Temporal and sequential transition phrases -

Introduction of multiple causal factors in analytical explanations -
Academic technical terminology in educational contexts
Material properties and characteristics (physical and abstract)
Speculative discussion of emotional states and feelings -
Evaluating factual consistency or correctness -

Ownership and possession concepts across domains -

Groups of characters described in collective states or actions
Analytical explanations of emotions and desires

Instructions to identify causal relationships between events
Institutional representation and possession relationships

The model needs to verify factual consistency

Scientific observation and analysis verbs

Complex explanatory sentence structures in formal writing
Analysis of power dynamics and systemic relationships -

-0.1 0.0 0.1 0.2
Feature Value

|
o A
N

Figure 4: Best performing semantically selected steering feature weights on the Xwinograd English
task.
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